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We consider the coarse graining of the generalized Brazovskii free energy functional
for striped patterns. The technique developed by Shankar for the Fermi liquids is
combined with the irreducible version of the exact renormalization group to calculate
the recursion relations for interaction vertices. We perform the one-loop calculations
from this method taking the eight-point vertex into account.
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1. INTRODUCTION

The systems that undergo transitions from an isotropic, disordered phase to a
nonuniform, spatially periodic phase are commonly referred to as Brazovskii
systems (class). Examples include weakly anisotropic antiferromagnets,(1) liq-
uid crystals near the isotropic-cholesteric(2) or the nematic-smectic C(3) transi-
tions, pion condensates in neutron stars,(4) fluids near Rayleigh-Bénard convective
instability,(5) and diblock copolymers.(6) An essential feature of these systems is
that the ordered phase is described by the spatial period 2π/k0 and the fluctu-
ation spectrum has a minimum at nonzero wave vectors k with |k| = k0, repre-
sented by a hypersphere in reciprocal space. Because of the large phase space for
one-dimensional fluctuations in the direction transverse to the hypersphere, the
Brazovskii systems are quite distinctive in comparison with the usual systems,
where the periodic structure is determined by isolated points in reciprocal space
and consequently the phase volume of fluctuations is small.
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In order to deal with the large fluctuations in the vicinity of a shell of nonzero
wave vectors, the renormalization-group (RG) theory has been worked out by
Hohenberg and Swift.(7) They implemented the Wilson’s momentum-shell RG(8)

with the techniques developed by Shankar for Fermi liquids,(9) which have a similar
phase space involving a Fermi surface. It turns out that all interaction parameters
are relevant (hence there is no analog of the familiar ε expansions of critical
phenomena theory), and that, within the one-loop approximation, the recursion
relations cannot be integrated to obtain the bulk (thermodynamic) quantities in
certain parameters region. Thus the often successful RG techniques simply fail
for the Brazovskii class.

Confronted with the above problems, we present in this paper an exact RG
equation for the generating functional (�) of the one-particle irreducible corre-
lation functions. The exact RG method(10,11) employs the coarse graining pro-
cedure whereby the fluctuating degrees of freedom with wave vectors in the
range |k − k0| > �̃ are averaged over to obtain the effective � for modes with
|k − k0| ≤ �̃. The exact flow equations can be derived as formal identities from
the functional integral which defines this coarse graining, and they are cast in the
form of functional differential equations. Hence they describe the scale depen-
dence of the free energy functional from which the physical properties at a given
length or momentum scale can be computed.

Unfortunately, hindered by the complexity of the functional differential equa-
tions thus obtained, the practical application of the exact RG method has not yet
been successful. Nevertheless, the future investigation of the generic feature of the
formulation of the exact RG equations which permits non-perturbative approxima-
tions should lead to a deep insight into the nature of perturbative renormalizability
of the Brazovskii model. After all, one of the main interest of the exact RG method
is its potential ability to tackle the physics in non-perturbative regime.

This paper is organized as follows. In Sec. 2 we briefly summarize some
basic definitions and representations of generating functionals that we use in the
formulation. In Sec. 3 we construct the exact RG flow equations for the Brazovskii
model, using the irreducible version of the exact RG in the form derived by Kopietz
and Busche.(12) In Sec. 4 we make contact with the perturbative approach and re-
derive the one-loop recursion relations obtained first in Ref. 7. A higher-order
truncation of an infinite hierarchy of differential equations is given in Sec. 5, and
then this paper concludes with summary and discussion in Sec. 6.

2. GENERATING FUNCTIONALS

We consider a scalar field theory with a bare action

S{φ} = S0{φ} + Sint{φ}, (1)
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where, in the Brazovskii model, the free part is given by

S0{φ} = 1

2

∫
|k−k0|<�̃0

dk

(2π )d
φkG−1

0 (k)φ−k, (2)

φk = ∫
dre−ik·rφ(r) being the Fourier transform of an order parameter φ(r) in d

dimensions, and

G−1
0 (k) = ε(k) ≡ r0 + ξ̄ 2

0 (k − k0)2, (3)

with k ≡ |k|. Here k0 is the wavenumber selected by the interacting system. We
assume that initially the order-parameter fields φk with large momenta |k − k0| >

�̃0 have been integrated out. The interaction part is

Sint{φ} = 1

2

∫
|k−k0|<�̃0

dk

(2π )d
[��̃0

(k) − �c(k)]φkφ−k + · · · , (4)

where the ellipsis denotes higher-order interactions, and Sint{φ} is a local function
of the fields that is invariant under φ → −φ.

The term ��̃0
(k) is the contribution to the irreducible self-energy from the

high-momentum field with |k − k0| > �̃0. The function �c(k) is the counter term

�c(k) = ε(k) − εb(k), (5)

which takes into account that in the free action S0 we have added it to the energy
dispersion in the absence of interactions, εb(k) = rb + ξ̄ 2

b (k − kb)2, so that the free
propagator G0(k) is singular for k = k0 , i.e., on the true ‘Fermi surface’, (not for
k = kb, the bare Fermi surface of the non-interacting system) at r0 = 0. Note the
counter term is not known a priori, and in fact requires the solution of the whole
problem (i.e., the so-called mode selection problem). For our present purpose,
however, it suffices to assume that k0 is already calculated by some algorithm2

The generating functional of the connected Green function can be defined by

eGc{J } =
∫
D{φ} e−S{φ}+(J,φ)∫
D{φ} e−S0{φ} , (6)

where we have used the notation

(J, φ) ≡
∫

drJ (r)φ(r). (7)

The connected n-point functions are then written as

G(n)
c (r1, . . . , rn) ≡ 〈φ(r1) · · · φ(rn)〉c = δnGc{J }

δ J (r1) · · · δ J (rn)

∣∣∣∣
J = 0

. (8)

2 The exact RG method has recently been applied in Ref. 13 to the fermionic analogue of this problem,
i.e., to the calculation of the true Fermi surface.
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Note that Gc{J } can be formally represented as follows in terms of functional
differential operators

eGe{J } =
∫
D{φ} e−Sint{φ}−S0{φ}+(J,φ)∫

D{φ} e−S0{φ}

= e−Sint{ δ
δ J } e

1
2 (J,G0 J )

= e
1
2 (J,G0 J )

[
e

1
2 ( δ

δφ
,G0

δ
δφ

) e−Sint{φ}]
φ=G0 J

, (9)

where

(A, G0 B) ≡
∫ ∫

dr1dr2 A(r1)G0(r1 − r2)B(r2). (10)

To obtain the generating functional of the one-particle irreducible Green
functions, we perform a Legendre transformation:

L{ϕ} = (ϕ, J ) − Gc{J {ϕ}}, (11)

where J = J {ϕ} is defined as a function of ϕ via

ϕ(r) = 〈φ(r)〉J ≡ δGc{J }
δ J (r)

. (12)

We then define the generating functional by

�{ϕ} ≡ L{ϕ} − 1

2

(
ϕ, G−1

0 ϕ
)
, (13)

which gives the irreducible n-point correlation function by

G(n)
ir (r1, . . . , rn) = δn�{ϕ}

δϕ(r1) · · · δϕ(rn)

∣∣∣
ϕ=0

. (14)

3. EXACT FLOW EQUATIONS

3.1. Coarse Graining

To integrate out degrees of freedom with momenta in the shell �̃ ≤ |k −
k0| < �̃0, we introduce the cutoff-dependent free propagator G�̃0,�̃

0 with the matrix
elements in momentum space given by

[
G�̃,�̃0

0

]
k,k′ = (2π )dδ(k + k′)G�̃,�̃0

0 (k). (15)

Hence

G�̃,�̃0
0 (k) = θ (�k − �̃) − θ (�k − �̃0)

r0 + ξ̄ 2
0 (k − k0)2

, (16)

where θ (x) is the Heaviside function, and �k ≡ |k − k0|.
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The elimination of degrees of freedom in the momentum shell �̃ ≤ �k < �̃0

corresponds to contracting all terms generated by expanding e−Sint in Eq. (9) with

the propagator G�̃,�̃0
0 . The exact flow equation for �{ϕ}, denoted now as �

�̃,�̃0
0 {ϕ},

is then obtained;

∂�̃��̃,�̃0 = −1

2
Tr

{
∂�̃

(
G�̃,�̃0

0

)−1[(
G�̃,�̃0

)2U �̃,�̃0
(
1 + G�̃,�̃0U �̃,�̃0

)−1

+ (
G�̃,�̃0

0

)2
�̂�̃,�̃0

(
1 + G�̃,�̃0

0 �̂�̃,�̃0
)−1]}

, (17)

with the initial condition (at �̃ = �̃0)

��̃0,�̃0{ϕ} = Sint{ϕ}. (18)

Here �̂�̃,�̃0 is defined as the field independent part of the second functional

derivative of ��̃,�̃0{ϕ}

δ2��̃,�̃0{ϕ}
δϕkδϕk′

= [�̂�̃,�̃0 + U �̃,�̃0{ϕ}]k,k′ (19)

so that U �̃,�̃0{ϕ = 0} = 0, and

G�̃,�̃0 ≡ [(
G�̃,�̃0

0

)−1 + �̂�̃,�̃0
]−1

(20)

is the interacting propagator.
Let us rewrite the right-hand side of Eq. (19) as

(2π )dδ(k + k′) [��̃,�̃0 (k) − �c(k)] + U �̃,�̃0

k,k′ {ϕ},

where the term �c(k) is due to the subtraction in Eq. (4); ��̃0
(k) = ��̃,�̃0 (k).

Using then the relations(14,15)

− ∂

∂�̃
G�̃,�̃0

0 (k) = δ(�k − �̃)

r0 + ξ̃ 2
0 �2

k

,

− ∂

∂�̃
[G�̃,�̃0 (k)]−1 = δ(�k − �̃)

r0 + ξ̄ 2
0 �2

k + ��̃,�̃0 (k) − �c(k)

with

G�̃,�̃0 (k) = θ (�k − �̃) − θ (�k − �̃0)

r0 + ξ̄ 2
0 �2

k + ��̃,�̃0 (k) − �c(k)
, (21)
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Eq. (17) is reduced to

∂�̃��̃,�̃0 = −1

2

∫
k

δ(�k − �̃)

r0 + ξ̄ 2
0 �̃2 + ��̃,�̃0 (k) − �c(k)

× [
U �̃,�̃0 (1 + G�̃,�̃0 U �̃,�̃0 )−1

]
k,−k

− V

2

∫
k
δ(�k − �̃) ln

[
r0 + ξ̄ 2

0 �̃2 + ��̃,�̃0 (k) − �c(k)

r0 + ξ̄ 2
0 �̃2

]
, (22)

where
∫

k ≡ (2π )−d
∫

dk and V is the volume of the system.

3.2. Irreducible Vertices

We expand the generating functional ��̃,�̃0
{ϕ} ≡ ��̃,�̃0{ϕ} in powers of ϕ,

��̃,�̃0
{ϕ} = �

(0)
�̃,�̃0

+
∞∑

n=1

1

n!

∫
k1

· · ·
∫

kn

(2π )dδ(k1 + · · · + kn)

× �
(n)
�̃,�̃0

(k1, . . . , kn)ϕk1
· · · ϕkn

, (23)

which defines the irreducible n-point vertices �(n). Note that only the even-point
vertices are non-zero. Identifying the terms with the same powers of ϕ’s on both
sides of Eq. (22), we obtain an infinite hierarchy of flow equations for the ir-
reducible vertices �(n)(k1, . . . , kn). Notice that by construction the subtracted
self-energy ��̃,�̃0 (k) − �c(k) is the irreducible two-point vertex

�
(2)
�̃,�̃0

(k) ≡ �
(2)
�̃,�̃0

(k,−k) = ��̃,�̃0 (k) − �c(k).

It proves to be useful hereafter to redefine the two-point vertex up to a constant

�
(2)
�̃,�̃0

(k) = r0 + ��̃,�̃0 (k) − �c(k). (24)

We now explicitly give the exact flow equations for the first four nonzero vertices.

1. Free energy
The vertex function �(0) describes the correction to the free energy

from the interactions of the fields.

∂�̃�
(0)
�̃,�̃0

= − V

2

∫
k
δ(�k − �̃) ln

⎡
⎣ ξ̄ 2

0 �̃2 + �
(2)
�̃,�̃0

(k)

r0 + ξ̄ 2
0 �̃2

⎤
⎦ . (25)

2. Two-point vertex

∂�̃�
(2)
�̃,�̃0

(k1) = −1

2

∫
k

δ(�k − �̃)

ξ̄ 2
0 �̃2 + �

(2)
�̃,�̃0

(k)
�

(4)
�̃,�̃0

(k1,−k1, k,−k). (26)
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3. Four-point vertex

∂�̃�
(4)
�̃,�̃0

(k1, ·, ·, k4) = −1

2

∫
k

δ(�k − �̃)

ξ̄ 2
0 �̃2 + �

(2)
�̃,�̃0

(k)
�

(6)
�̃,�̃0

(k1, ·, ·, k4, k,−k)

+
∫

k

δ(�k − �̃)

ξ̄ 2
0 �̃2 + �

(2)
�̃,�̃0

(k)

[
�

(4)
�̃,�̃0

(k,−k − k1 − k2, k1, k2)

× G�̃,�̃0 (k + k1 + k2)�(4)
�̃,�̃0

(k + k1 + k2 − k, k3, k4)

+ (k2 ←→ k3) + (k2 ←→ k4)
]
. (27)

In Eq. (27), the last two terms in the square brackets are the same as the
first term but with the indices swopped as indicated.

4. Six-point vertex

∂�̄�
(6)
�̃,�̃0

(k1, . . . , k6) =

− 1

2

∫
k

δ(�k − �̃)

ξ̄ 2
0 �̃2 + �

(2)
�̃,�̃0

(k)
�

(8)
�̃,�̃0

(k1, . . . , k6, k,−k)

+
∫

k

δ(�k − �̃)

ξ̄ 2
0 �̃2 + �

(2)
�̃,�̃0

(k)

15 terms∑
{I1,I2}

�
(4)
�̃,�̃0

(I1,−k − K1, k)

× G�̃,�̃0 (k + K1)�(6)
�̃,�̃0

(I2,−k, k + K1)

−
∫

k

δ(�k − �̃)

ξ̄ 2
0 �̃2 + �

(2)
�̃,�̃0

(k)

45 terms∑
{I1,I2},I3

�
(4)
�̃,�̃0

(I1, k,−k − K1)

×G�̃,�̃0 (k + K1)�(4)
�̃,�̃0

(I2, k − K2,−k)

× G�̃,�̃0 (k − K2)�(4)
�̃,�̃0

(I3, k + K1,−k + K2). (28)

with K j = �k∈I j ki . Here the notation due to Morris(14) is used. Namely,
I j ( j = 1, 2, 3) are disjoint subsets (Ii ∩ I j = Ø for i �= j) of the momenta
such that

⋃m
j=1 I j = {k1, . . . , k6} with m = 2 or 3. The sum over {I1, I2}

means a sum over all such disjoint subsets but pairs are to be counted
only once. Graphical representation of Eq. (28) is shown in Fig. 1. The 15
terms of the first sum correspond to all the possibilities of choosing distinct
subsets of four momenta out of the six available momenta (k1, . . . , k6).
The 45 terms in the second sum correspond to one half of the possibilities
of picking subsets of four momenta out of the six momenta, and then
picking subsets of two out of these four chosen momenta.
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Fig. 1. Graphical illustration of the flow Eq. (28). The n-point irreducible vertex �(n) is drawn as
a filled circle while the internal lines are full propagators G. The cross represents the restriction to
momentum k such that �k = �̃.

3.3. Rescaling

After the elimination of degrees of freedom, we must put the coarse-grained
generating functional ��̃,�̃0 into the same form as the original � to complete the
RG transformation. This can be achieved by rescaling the momenta and fields. We
introduce dimensionless variables as follows:

k − k0 = �̃q, �̃ = �̃0 e−s,

ϕk = �̃dϕ−d Z1/2
s ϕ̄Q = �̃−3/2 Z1/2

s ϕ̄Q. (29)

We have labeled the momentum k by its direction n̂ = k/k and by the dimension-
less variable q ≡ (k − k0)/�̃, so that we now use the notation Q ≡ (n̂, q) instead
of k. Using Q istead of k as integration variables, we have3

∫
k

= 2ν0�̃

∫
Q

≡ 2ν0�̃

∫
d Sn
Sd

∫
dq (30)

where ν0 = Sdkd−1
0 /(2π )d , and d Sn is the surface element, Sd being the surface

area of the unit sphere, Sd = 2πd/2/�(d/2)(�(z) is the gamma function). Note
also that the scaling dimension dϕ of the field ϕ(r) in real space is given by
dϕ = d − 3/2 in contrast to the case of the ϕ4-theory for which dϕ = (d − 2)/2
(see Appendix). The scale-dependent factor Zs is a multiplicative ‘wave function’
(ϕ) renormalization factor.

The above rescaling of momenta and fields (29) implies the renormalized
vertices, which should now be considered as functions of the scaling variables s

3 In the Jacobian, J (n̂, q), associated with the transformation k = (n̂, k) → Q = (n̂, q), we have ne-
glected the factor �̃/k0 in comparison to q−1 (noting that �̃0 ≈ k0);

J (n̂, q) = (k0 + �̃q)d−1�̃ ≈ kd−1
0 �̃.
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and Q j and hence are denoted as �
(2n)
s (Q1, . . . , Q2n), become

�(2n)
s (Q1, . . . , Q2n) = �̃2n−1

(
Zs

�̃3

)n

�
(2n)
�̃,�̃0

(k1, . . . , k2n), (31)

where the factor 2n − 1 comes from the factor
∫
k1

· · · ∫k2n
δ(k1 + · · · k2n) in (23).

Consequently, the flow equations of the renormalized vertices �
(2n)
s follow in the

straightforward way. We obtain

∂s�
(2n)
s (Q1, . . . , Q2n) = (n + 1 − nηs − Qi · ∇Qi

)�(2n)
s (Q1, . . . , Q2n)

− (Zs/�̃)n∂�̃�
(2n)
�̃,�̃0

(k1, . . . , k2n). (32)

Here ηs is the ‘anomalous’ dimension given by

ηs = −∂s ln Zs,

and the second term on the right-hand side is a contribution from the mode-
elimination transformation, which is given in the previous subsection.

4. RG AT ONE LOOP

4.1. Relevant Couplings

Due to the argument by Hohenberg and Swift,(7) which borrows from the one
given by Shankar(9) for the Fermi liquid, we know that only a part of the n-point
vertex functions (n > 2) whose wave vectors are equal and opposite in pairs with
their magnitude equal to k0 survives the iterated application of RG transformations.
(For an overview on the essential ideas of the technique advanced by Shankar as
applied to Brazovskii class, see Appendix, where a caveat on this point is given as
well.) We call such a part the relevant vertex function. We thus separate the vertex
function �

(m)
s (m > 2) into a relevant and an irrelevant part:

�(m)
s ((n̂1, q1), (n̂2, q2), . . . , (n̂m−1, qm−1), (n̂m, qm))

= �(m)
s ((n̂1, 0), (−n̂1, 0), . . . , (n̂m, 0), (−n̂m, 0))

+ �̃(m)
s ((n̂1, q1), (n̂2, q2), · · · , (n̂m−1, qm−1), (n̂m, qm)). (33)

For simplicity we hereafter use the notations

us(n̂1, n̂2) = �(4)
s ((n̂1, 0), (−n̂1, 0), (n̂2, 0), (−n̂2, 0)),

ws(n̂1, n̂2, n̂3) = �(6)
s ((n̂1, 0), (−n̂1, 0), (n̂2, 0), (−n̂2, 0), (n̂3, 0), (−n̂3, 0)),

ts(n̂1, n̂2, n̂3, n̂4) = �(8)
s ((n̂1, 0), (−n̂1, 0), (n̂2, 0), (−n̂2, 0),

× (n̂3, 0), (−n̂3, 0), (n̂4, 0), (−n̂4, 0)), (34)
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etc. Because the RG flow rapidly approaches the manifold spanned by the relevant
couplings, for a one-loop approximation presented below, the parts �̃(m) can be
ignored.

4.2. One-Loop Calculations

To one-loop order the flow equations for the vertex functions are then
given in terms of the coupling functions (34). We find, for the function rs(n̂) ≡
�

(2)
s ((n̂, 0), (−n̂, 0)),

(∂s − 2 + ηs)rs(n̂1) = ν0

∫
Q

g(Q)us(n̂1, n̂), (35)

where

g(Q) ≡ δ(q − 1)

rs(n̂) + Zs ξ̄
2
0

,

and Eq. (30) is implied for the integral.
For us(n̂1, n̂2), it turns out that one must distinguish between the case n̂1 �= n̂2

and the case n̂1 = n̂2. Then, for n̂1 �= n̂2,

(∂s − 3 + 2ηs)us(n̂1, n̂2) = ν0

∫
Q

g(Q)ws(n̂1, n̂2, n̂)

− 2ν0

∫
Q

g(Q)us(n̂, n̂1)us(n̂, n̂2)Gs(Q), (36)

and

(∂s − 3 + 2ηs)us(n̂1, n̂1) = ν0

∫
Q

g(Q)ws(n̂1, n̂2, n̂)

− 4ν0

∫
Q

g(Q)[us(n̂, n̂1)]2Gs(Q), (37)

where

Gs(Q) ≡ θ (q − 1) − θ (q − es)

rs(n̂) + Zs ξ̄
2
0 q2

.

Similarly, for ws we find (with n̂i �= n̂ j for i �= j)

(∂s − 4 + 3ηs)ws(n̂1, n̂2, n̂3) = ν0

∫
Q

g(Q)ts(n̂1, n̂2, n̂3, n̂)

− 6ν0

∫
Q

g(Q)us(n̂1, n̂)ws(n̂2, n̂3, n̂)Gs(Q)
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+ 6ν0

∫
Q

g(Q)us(n̂1, n̂)us(n̂2, n̂)us(n̂3, n̂)[Gs(Q)]2, (38)

(∂s − 4 + 3ηs)ws(n̂1, n̂1, n̂3) = ν0

∫
Q

g(Q)ts(n̂1, n̂1, n̂3, n̂)

− 8ν0

∫
Q

g(Q)us(n̂1, n̂)ws(n̂1, n̂3, n̂)Gs(Q)

− 2ν0

∫
Q

g(Q)us(n̂3, n̂)ws(n̂1, n̂1, n̂)Gs(Q)

+ 12ν0

∫
Q

g(Q)[us(n̂1, n̂)]2us(n̂3, n̂)[Gs(Q)]2, (39)

(∂s − 4 + 3ηs)ws(n̂1, n̂1, n̂1) = ν0

∫
Q

g(Q)ts(n̂1, n̂1, n̂1, n̂)

− 18ν0

∫
Q

g(Q)us(n̂1, n̂)ws(n̂1, n̂1, n̂)Gs( Q)

+ 36ν0

∫
Q

g(Q)[us(n̂1, n̂)]3[Gs(Q)]2. (40)

4.3. Preaverage Approximation and Recursion Relations

In order to proceed further we resort to truncation of the hierarchical set
of flow equations given in the previous subsection. Let us first set �(n) = 0 for
n ≥ 8, expecting this is sufficient to describe the first-order transition that will
occur in our model. Furthermore, we assume that the angle dependence of us

and ws is negligible and hence they are practically constant.(7) This is equivalent
to replacing the coupling functions by the angle-averaged quantities in the flow
equations (called preaverage approximation). We thus introduce the notations

r̃ = ξ̄−2
0 rs(n̂),

ũa = ν0ξ̄
−4
0 us(n̂1, n̂2), ũb = ν0ξ̄

−4
0 us(n̂, n̂),

w̃a = ν2
0 ξ̄

−6
0 ws(n̂1, n̂2, n̂3), w̃b = ν2

0 ξ̄
−6
0 ws(n̂1, n̂1, n̂2),

w̃c = ν2
0 ξ̄−6

0 ws(n̂, n̂, n̂), (41)

with n̂i �= n̂ j for i �= j , where we have inserted the cosmetic factors ξ̄−2
0 , etc.,

simply so as to make the resulting recursion equations terse. Moreover, the wave
function renormalization is assumed to be unnecessary (hence Zs = 1), which
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is somewhat ad hoc at this point but turns out to be adequate for the one-loop
approximations that we carry out subsequently.

Upon carrying out the integrals with the help of the identities(14)

∫
dqδ(q − 1)θ (q − 1) = 1

2
,

∫
dqδ(q − 1)[θ (q − 1)]2 = 1

3
,

we can now write down the recursion relations for the quantities defined by
Eq. (41). They read

(∂s − 2)r̃ = ũa

r̃ + 1
,

(∂s − 3)ũa = w̃a

r̃ + 1
− ũ2

a

(r̃ + 1)2
,

(∂s − 3)ũb = w̃b

r̃ + 1
− 2ũ2

a

(r̃ + 1)2
,

(∂s − 4)w̃a = − 3ũaw̃a

(r̃ + 1)2
+ 2ũ3

a

(r̃ + 1)3
,

(∂s − 4)w̃b = − ũaw̃b

(r̃ + 1)2
− 4ũaw̃a

(r̃ + 1)2
+ 4ũ3

a

(r̃ + 1)3
,

(∂s − 4)w̃c = − 9ũaw̃b

(r̃ + 1)2
+ 12ũ3

a

(r̃ + 1)3
. (42)

As is evident from the above recursion relations, vertex quantities are all
relevant variables with respect to r̃ = ũ j = w̃ j = 0.(7) As a consequence, suffering
from the absence of a small parameter, we have no controlled ε expansion, in
distinction to a successful application of RG methods to critical phenomena. An
important observation(7,16) is in order here. After the RG transformation, the �

still has the form (23) when expressed in terms of the r̃ (s), ũ j (s), w̃ j (s) and the
corresponding field, ϕ̃(s), with the upper cut-off �̃0 (since the cut-off is restored
to its original value by the rescaling transformation). Let us now make a change
of variables

r (s) = e−2s r̃ (s), u j (s) = e−3s ũ j (s), w j (s) = e−4sw̃ j (s) (43)

supplemented with

ϕ(s) = e3s/2ϕ̃(s). (44)

Then the � expressed in terms of these new variables takes precisely the same
form as (23) with now the upper cut-off �̃ = �̃0 e−s . Therefore, this � can be
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regarded as a coarse-grained � obtained by eliminating the modes in the interval
�̃ < |k − k0| < �̃0.

If we define � = e−s , these r, u j and w j satisfy the recursion relations which
are

∂r

∂�
= − ua

r + �2
,

∂ua

∂�
= − wa

r + �2
+ u2

a

(r + �2)2
,

∂ub

∂�
= − wb

r + �2
+ 2u2

a

(r + �2)2
,

∂wa

∂�
= 3uawa

(r + �2)2
− 2u3

a

(r + �2)3
,

∂wb

∂�
= 4uawa

(r + �2)2
+ uawb

(r + �2)2
− 4u3

a

(r + �2)3
,

∂wc

∂�
= 9uawb

(r + �2)2
− 12u3

a

(r + �2)3
. (45)

These recursion relations are exactly in the same form as those obtained by
Hohenberg and Swift(7) (we have corrected the error in Eq. (A24f) of Ref. 7, where
the factor 9 in the right-hand side of the last equation of Eq. (45) is replaced with
the factor 8). Note, however, that � = �̃/�̃0 in our case, whereas in Ref. 7 their
� = our �̃. The difference stems from our definition (31) of the dimensionless
(with respect to momentum) vertices. In fact, with the change into the dimensional
variables (which we call HS-variables)

rHS ≡ r�̃2
0, uHS j ≡ u j�̃

3
0, wHS j ≡ w j�̃

4
0, ( j = a, b, c),

�HS ≡ ��̃0(= �̃) (46)

the recursion relations for the HS-variables take exactly the same mathematical
structure as of Eq. (45) with the scale variable �HS varying in the range [0, �̃0].

Next we present some numerical results of Eq. (45). For ease of comparison
with the results of Ref. 7, we employ the HS-variables in the analysis. We solve
the recursion relations (45) numerically with the initial conditions at s = 0, i.e.,
at �HS = �̃0 = ∞ (where we have set �̃0 = ∞) as follows:

rHS = τ, uHS j = 1, wHS j = 0 (47)

with j = a, b, c. However, we find that the denominator in the Eq. (45),
rHS(�HS, τ ) + �2

HS, contains zero at some τ < 0, hence the solutions are not
well-defined for all τ and �HS. The region in the parameter space (τ,�HS) where
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Fig. 2. (a) The function �∗
HS(τ ) at which rHS(�HS, τ ) + �2

HS has zeros. In the underlying region the
solutions of the recursion relations (45) are not defined. (b) Same as (a) but for the Brazovskii model
with the eight vertex function. The recursion relations (50) have a singularity in the shaded region.

such singularities occur in the recursion relations is depicted in Fig. 2(a). Figure 3
(dotted lines) show how the ‘bulk’ vertices rHS(�HS = 0), uHSb(�HS = 0) and
wHSc(�HS = 0) behave as a function of τ when rHS + �2

HS remains positive. No-
tice here that the coupling constant rHS remains nonvanishing at the bulk limit

Fig. 3. Bulk vertex constants as a function of τ . They are obtained by solving the recursion relations
with the initial conditions: rHS = τ, uHS j = 1, wHS j = 0, tHS j = 0 where j = a, b, c, d; the dotted
lines represent the solutions for (45), while the continuous curves for (50). On the scale in the panel
(a), higher-order vertices are almost indistinguishable. For an enlargement, see the panel (b).
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Fig. 4. One-loop diagrams contributing to irreducible vertex functions; diagrams contributing to �(2)

(a), �(4) (b), �(6) (c), and to �(8) (d).

�HS = 0. This means that the correlation length of the system is finite, signalling
a (fluctuation-induced) first-order phase transition that belongs to the Brazovskii
class.(1) It thus seems that the rescaling (43) and (44) is physically more plausible
than the conventional scaling given in Eq. (29).

In passing we note that the behavior of coefficients of the bulk free energy
that we obtain by solving the recursion relations (45) is in more agreement with
the result of what Ref. 7 called the ‘phenomenological’ theory4 , owing to our
corrected recursion relation for the coupling constant wc.

5. HIGHER ORDER TRUNCATION

As we have shown in the preceding section, the solutions of Eq. (45) do not
exist for all τ and �. It is therefore interesting to investigate whether inclusion of
higher-order vertices not taken into account in the preceding calculation would be
free from such difficulty. To that end we repeat the RG calculation by retaining
the eight-point vertex function. The corresponding diagrams at one-loop order are
shown in Fig. 4. Besides the notations (41), we define

t̃a = ν3
0 ξ̄−8

0 ts(n̂1, n̂2, n̂3, n̂4), t̃b = ν3
0 ξ̄−8

0 ts(n̂1, n̂1, n̂2, n̂3),

t̃c = ν3
0 ξ̄−8

0 ts(n̂1, n̂1, n̂1, n̂2), t̃d = ν3
0 ξ̄−8

0 ts(n̂1, n̂1, n̂1, n̂1), (48)

with n̂i �= n̂ j for i �= j , and make an additional change of variables

t j = e−5s t̃ j , tHS j = t j�̃
5
0. (49)

4 Their phenomenological coarse-graining procedure consists of (i) averaging the free energy over the
range �̃ < |k − k0| < �̃0 using the Hartree diagrams, and (ii) no rescaling of momenta and field is
performed.
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We then obtain, within the same approximations as before,

∂r

∂�
= − ua

r + �2
,

∂ua

∂�
= − wa

r + �2
+ u2

a

(r + �2)2
,

∂ub

∂�
= − wb

r + �2
+ 2u2

a

(r + �2)2
,

∂wa

∂�
= − ta

r + �2
+ 3uawa

(r + �2)2
− 2u3

a

(r + �2)3
,

∂wb

∂�
= − tb

r + �2
+ 4uawa

(r + �2)2
+ ua wb

(r + �2)2
− 4u3

a

(r + �2)3
,

∂wc

∂�
= − tc

r + �2
+ 9ua wb

(r + �2)2
− 12u3

a

(r + �2)3
,

∂ta
∂�

= 4ua ta
(r + �2)2

+ 3w2
a

(r + �2)2
− 12u2

a wa

(r + �2)3
+ 6u4

a

(r + �2)4
,

∂tb
∂�

= 4ua ta
(r + �2)2

+ 2ua tb
(r + �2)2

+ 4w2
a

(r + �2)2
+ 2wa wb

(r + �2)2

− 20u2
a wa

(r + �2)3
− 2u2

a wb

(r + �2)3
+ 12u4

a

(r + �2)4
,

∂tc
∂�

= ua tc
(r + �2)2

+ 9ua tb
(r + �2)2

+ 18wa wb

(r + �2)2

− 36u2
a wa

(r + �2)3
− 18u2

a wb

(r + �2)3
+ 36u4

a

(r + �2)4
,

∂td
∂�

= 16ua tc
(r + �2)2

+ 36w2
b

(r + �2)2
− 144u2

a wb

(r + �2)3
+ 144u4

a

(r + �2)4
. (50)

Again as before, when Eq. (50) are reexpressed in terms of the HS-variables, they
yield precisely the same form as Eq. (50). However, we find that the solutions of
the recursion Eq. (50) are still not well-defined for all τ and � [see Figs. 2(b)
and 3]. Nevertheless, we note that the unphysical parameter region is rendered
shrunk by including the eight-vertex interactions.
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6. SUMMARY AND DISCUSSION

Thus, even with ϕ8-interactions taken into consideration, the RG recursion
relations contain singularities for τ < 0, and the difficulty to use RG method for
Brazovskii model remains unresolved.

As we mentioned earlier, Eq. (50) exhibits the ‘bulk’ solutions only for
limited values of parameters (τ,�). This is related to the presence of the pole
of the renormalized propagator [∞(r + �2)−1]. This pole is connected with the
marginal coupling constant r, and including an irrelevant coupling which measures
the leading deviation from the energy dispersion (3) is likely to remove it from
the parameter space. It would hence be of interest to check this assumption by
studying the effect of such (possibly dangerous) irrelevant couplings, which is left
for future investigation.

We should emphasize that this same feature, i.e., the existence of the singu-
larity (for � = �∗) at which the renormalized propagator diverges is also known
in the RG approach to the coarse-grained free energy of the two-phase coexistence
in the Ising model.(16) The line for �∗ → 0 gives the effective spinodal curve.
However, this is thought to be incorrect for real systems,(16,17) and is an artifact
of the approximate way of coarse-graining using the finite order ε-expansion.
Thus the finite order RG method cannot correctly explain all aspects of first-order
phase transitions even in the case of Ising universality class, for which one finds
two relevant couplings for ε = 4 − d > 0. [Recall the recursion relations for the
φ4-theory parametrized by quadratic and quartic coupling constants, r̃ , and ũ,
respectively. They read(18) in appropriate units

∂s r̃ = 2r̃ + A
ũ

r̃ + 1
,

∂s ũ = εũ − B
ũ2

(r̃ + 1)2
,

where A and B are some positive constants. The above equations should be
compared with Eq. (42).]

It might also be worth trying a systematic truncation of the flow equations
in the number of vertex constants a la RG calculations by Diaz-Guilera(19) for
the self-organized critical phenomena, for which one also encounters an infinite
number of relevant coupling constants. Although being straightforward, it would
be prohibitively laborious and we leave it for future discussion.

So far in our RG treatment of the Brazovskii model (1), we have had critical
phenomena in mind. Another phenomenon of great interest is the process of pat-
tern formation far from the critical point. When the system is suddenly quenched
from a homogeneous high-temperature phase to an ordered phase where the initial
state is thermodynamically unstable, the system develops a labyrinthine domain
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morphology consisting of locally ordered stripes. As time increases, stripes which
are initially randomly oriented align in parallel, thereby creating an increasingly
ordered pattern. In the late stages of this coarsening process, there is evidence(20)

for the type of scaling behavior and universality usually encountered in criti-
cal phenomena. Namely, the structure factor, S(k, t) ≡ 〈ϕk(t)ϕ−k(t)〉, which is a
Fourier transform of the order-parameter correlation function, is found to have a
scaling form

S(k, t) = �(t) f (|k − k0|�(t)) (51)

with the characteristic domain size �(t), where �(t) increases as a power of time

�(t) ∼ tn.

Under the rescaling of the RG transformations [cf. (A1) and (A2) below]:

q = q ′/b, t = bzt ′ with z = 1/n,

ϕq (t) = bζ̂ ϕ′
q ′ (t ′),

where we have introduced the shorthand ϕq for ϕk, the scaling (51) of the structure
factor requires

ζ̂ = 1/2 (52)

Hence the wave function renormalization factor Zs [notice that b = �̃0/�̃] takes
the value Zs = b−2, from which it follows that the anomalous dimension is

ηs = −∂ ln Zs

∂ ln b
= 2 . (53)

This should be compared with the case of Ising model, for which a result ηs =
2 − d is obtained.(21) With the formula (53) all the calculations carried out in the
previous sections (Secs. 4.3 and 5) can be simply repeated. Now we see that the
coarse-grained � functional with the upper cut-off �̃ is expressed in terms of the
new variables defined by

r (s) = r̃ (s), u j (s) = es ũ j , w j (s) = e2sw̃ j (s),

t j (s) = e3s t̃ j (s), ϕ(s) = es/2ϕ̃(s), (54)

in place of the definitions (43), (44) and (49). Then, interestingly, the recursion
relation takes precisely the form (45) or (50) when expressed in terms of the
running variables (54).

It is important to note that the last result just given above is based upon the
assumption of simple scaling (51). At present Eq. (51) is nothing more than a
successful phenomenological formula to fit the data of growth kinetics of stripe
patterns. There is no first-principle derivation of this dynamical scaling form, with
few efforts in this direction,(22,23) and its validity still needs to be questioned.
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We finally mention that many dynamical phenomena in Brazovskii systems
(such as coarsening processes of stripe patterns and the motion of topological
defects(24)) are very much slow. However at present no successful theory is yet
available to deal with the problem in general. Apparently the success of the RG
transformation for the free energy functional is a prerequisite to understanding the
mechanism of the dynamical behavior of any system in the Brazovskii class by
RG methods.

APPENDIX: MOMENTUM-SHELL RG

Wilson’s renormalization-group method(8) involves two steps of transforma-
tion. They are

1. Mode elimination: integrating out the fast modes ϕk with momentum k
satisfying |k − k0| > �0/b to reduce the cutoff from �̃0 to �̃0/b with
b > 1.

2. Rescaling of momenta and field: writing k = (k0 + q)n where n is the unit
vector, the momenta rescaling is defined by

q ′ = bq, (A1)

and the field rescaling is then

ϕ′
q ′ = ζ−1ϕq , (A2)

with the rescaling parameter ζ to be determined later. Note that in this
appendix, for convenience, we have introduced the shorthand ϕq for ϕk,
and n instead of n̂ which we used in the main text.

The existence of the hypersphere in momentum space obeying |k| = k0 plays a
profound role in the application of the RG to the Brazovskii model not seen in
the usual application to the ϕ4 theory of critical phenomena where we eliminate
shells surrounding a single point (or a few points) in k space.

To see this, let us consider the quartic interaction. After the mode elimination
at zero loops (or tree level), it is given by

X ≡ 1

4!

∫ <

k1

· · ·
∫ <

k3

ϕk1
· · ·ϕk4

u(k1, . . . , k4)θ (�̃0/b − |q4|), (A3)

where
∫ <

k ≡ ∫
|k−k0|<�̃0/b ddk/(2π )d , k4 = −(k1 + k2 + k3), and q4 = k4 − k0.

The θ function in (A3) is caused by the condition that each momentum ki has
to lie within the shell of thickness 2�̃0/b around the hypersphere. We now see
the problem in implementing the second step in the RG transformation, momenta
rescaling. Namely, the θ function after the RG rescaling is not the same function
of the new (rescaled) variables as the θ function before the RG transformation was
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of the old variables;

θ (�̃0/b − |q4|) = θ (�̃0 − b|q4|) = θ

(
�̃0 −

∣∣∣∣|
3∑

i=1

(bk0 + q ′
i )ni | + bk0

∣∣∣∣
)

�= θ (�̃0 − |q ′
4|) . (A4)

where ni = ki/|ki |. Thus the interaction measure does not come back to its old
form after the RG transformation due to the change k0 → bk0.

Solution of this impasse is to use a soft cutoff for q4,(9)

θ (�̃0 − |q4|) → e−|q4|/�̃0 .

With this replacement, and keeping k0 terms and neglecting O(q) terms, the tree
level interaction (A3) becomes

X = 1

4!

∫ <

k1

. . .

∫ <

k3

ϕk1
· · ·ϕk4

u(k1, . . . , k4) exp

(
−b|q4|

�̃0

)

= 1

4!

∫ <

k1

· · ·
∫ <

k3

ϕk1
· · ·ϕk4

u(k1, . . . , k4) exp

(
−bk0

�̃0
||n1 + n2 + n3| − 1|

)

= 1

4!

∫ <

k′
1

· · ·
∫ <

k′
3

ϕ′
k′

1

· · ·ϕ′
k′

4

u′(k′
1, . . . , k′

4) exp

(
− k0

�̃0
||n1 + n2 + n3| − 1|

)
,

(A5)

where

u′(k′
1, . . . , k′

4) = ζ 4b−3 exp

(
− (b − 1)k0

�̃0
||n1 + n2 + n3| − 1|

)
u(k1, . . . , k4).

(A6)

Thus, by iteration of RG (in other words, for large b, that is at the fixed point),
only coupling with momenta satisfying the condition

|n1 + n2 + n3| = 1 (A7)

will remain finite.
In two dimensions, Eq. (A7) has three solutions:

1. n3 = −n1 (hence n4 = −n2),
2. n3 = −n2 (hence n4 = −n1),
3. n2 = −n1 (hence n4 = −n3).

Thus in d = 2, the four vectors must be equal and opposite in pairs [as in Fig. 5(a)]
when their magnitude goes to k0.

In d = 3, Eq. (A7) has an additional continuum of solutions. Suppose n1 +
n3 �= 0. Then the sum of the vectors n1 and n2 lies on the plane they define and
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Fig. 5. Allowed momenta at the fixed point of RG transformation in d = 2 (a), and in d = 3 with
n1 + n2 �= 0(b).

bisects the angle between them. The vectors n3 and n4 can lie anywhere on the
cone generated by rotating n3 and n4 around their sum [see Fig. 5(b)]. Then

n1 + n2 + n3 + n4 = 0

as required by the momentum conservation, and the condition (A7) is satisfied
at the same time. In the particular case where n1 + n3 = 0, n2 and n4 must be
mutually opposite as in d = 2.

The RG used in Ref. 7 considers only the exceptional case when n1 + n3 = 0.
Being stated in another way, the RG calculations of Ref. 7 assume that dependence
on the angle between the planes containing the pair (n1, n2) and (n3, n4) can be
ignored. The coupling u then depends only on the variable z = n1 · n2, becoming
the full equivalent of the Landau parameter F in Landau’s Fermi-liquid theory.(9)

We follow this strategy in the main text of the present paper.
We will choose the scaling parameter ζ so that the coefficient ξ̄0 of the free

part of the action [Eq. (2) with (3) in the main text] is kept constant. Then we find

ζ = b3/2, (A8)

that is, the scaling dimension of the field ϕ(r) in real space is dϕ = d − 3/2. The
relation (A6) with (A8) demonstrate that the coupling constant u(k1, . . . , k4) is a
relevant coupling. Repeating the preceding analysis, we can also draw the similar
conclusions for the higher order coupling constants.

Finally, we remark that a free action of the form (2) with either(7)

G−1
0 (k) = r0 + ξ̃ 4

0

(
k2 − k2

0

)2

or(25)

G−1
0 (k) = r0 + a

k2
+ ck2
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does not reproduce itself after the RG rescaling transformation. This is why we
have started with the free part of the form (3) in our RG formulation.
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